If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11=7+24t-16t^2
We move all terms to the left:
11-(7+24t-16t^2)=0
We get rid of parentheses
16t^2-24t-7+11=0
We add all the numbers together, and all the variables
16t^2-24t+4=0
a = 16; b = -24; c = +4;
Δ = b2-4ac
Δ = -242-4·16·4
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{5}}{2*16}=\frac{24-8\sqrt{5}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{5}}{2*16}=\frac{24+8\sqrt{5}}{32} $
| 6*n-7=n+33 | | 2x-8=5+12 | | 3w(5w+9)=0 | | 14+5=-5x-6(-6+15)+5 | | 8e+2=2e+20 | | 14-0.75x=11 | | 14-3/4x=11 | | 3(x-1)=@x-1 | | 6x-4=13x-61 | | 9d+4=12d-20 | | 275x=1100 | | 3x^2=-63+18x | | 1300+175x=2350 | | 4(x+20)=3x+84−x | | 7x2-210X=0 | | 7x^2-210X=0 | | 4(4n+1)=68 | | 7x^-210X=0 | | 95=-8x+9 | | Q=20-0.1p | | (4x-5)^2-7=0 | | 4x-5)^2(x-7)=0 | | 7a+4a=17 | | 7x/2x^2-15=1 | | x=2,5E-9 | | 24=2/1+x | | H=-16t^+80t | | 10a=2(6a+5)-2a | | 15x-16=89 | | r/2=5r/4 | | H=16t^+80t | | 10=5/1-x |